INTRODUCTION

When matter is very finely divided, its surface is enormously increased and its properties may change appreciably. The increased fraction of molecules in or near the surface and the asymmetric distribution of matter about them impart new properties to the surface. Surface Chemistry deals with these effects – particularly adsorption and properties of colloidal system.

Surface and colloid Chemistry is a core unit at the undergraduate level for all students pursuing chemistry related courses. The unit is aimed at introducing the learners to the various concepts and understanding of the mechanisms of surface reactions. It is hoped that this unit will help the learner to comprehend the complex nature of surfaces and how they influence chemical reactions both in nature and industry and apply the knowledge acquired in tackling real life problems.

This course requires the learner to have a good understanding of the basic units of physical and other chemistry and mathematics units. The study guide begins with definitions of surfaces and interfaces, adsorption, Langmuir, Freundlich and BET isotherms, chromatography, heterogeneous catalysis, liquid surface, action of soap solutions, the colloidal state and macromolecules.

It is expected that the learner will be able to use the study questions and activities provided in the text to evaluate his/her understanding of the concepts presented in the lectures.

SYLLABUS

UNIT OBJECTIVES

At the end of the unit the learner should be able to;

a. Define various terminologies used in surface and colloid chemistry.
b. Discuss the different types of adsorption and use the adsorption isotherms to interpret given data.
c. Discuss the various applications of adsorption.
d. Describe different types of heterogeneous catalysis.
e. Explain different phenomena related to the liquid surface.
f. Give a detailed discussion of the colloidal system.
g. Discuss the various ways of determining the molar masses of macromolecules
COURSE OUTLINE;

1. Surfaces and Interfaces.

2. Adsorption;
 2.1. Introduction
 2.2. Extent of adsorption
 2.3. Types of adsorption
 2.4. Adsorption isotherms;
 2.4.1. The Langmuir isotherm
 2.4.2. The Freundlich isotherm;
 2.4.3. Adsorption from solutions
 2.4.4. The BET isotherm
 2.5. Applications of adsorption
 2.5.1. Chromatography;
 2.5.1.1. The chromatogram
 2.5.1.2. Concepts used in Chromatography;
 2.5.1.3. Reduced parameters
 2.5.1.4. Classification of Chromatographic Techniques
 2.5.1.5. Gas Chromatography
 3. Heterogeneous catalysis;
 3.1. The Eley - Rideal mechanism
 3.2. The Langmuir – Hinshelwood mechanism
 3.3. Examples of catalysis;
 3.3.1. Hydrogenation
3.3.2. Oxidation

3.3.3. Cracking and reforming

4. Liquid surfaces;
 4.1. Surface tension
 4.2. Surfactants
 4.3. Surface excess
 4.4. Action of soap solutions

5. Colloidal systems;
 5.1. Classification of colloidal systems
 5.2. Colloids in industrial uses
 5.3. Preparation of colloids
 5.4. Properties of colloidal systems

6. Macromolecules;
 6.1. Mean molecular masses
 6.2. Colligative properties
 6.3. Sedimentation
 6.4 The Isoelectric Point.
 6.5 Viscosity
TABLE OF CONTENTS

TITLE
INTRODUCTION
SYLLABUS
UNIT OBJECTIVES
COURSE OUTLINE

CONTENTS

LECTURE 1: SURFACES AND INTERFACES
1.1 Introduction
1.2 Surfaces and Interfaces
1.3 Adsorption
1.3.1 Difference between Adsorption and Absorption
1.3.2 Types of adsorption
1.3.3 The Extent of Adsorption
1.4 Adsorption Isotherms
1.4.1 The Langmuir Isotherm
1.4.2 Adsorption with dissociation

LECTURE 2: FREUNDLICH ADSORPTION ISOTHERM
2.1 Introduction
2.2 Freundlich (Classical) Adsorption Isotherm
2.3 Adsorption from Solutions

LECTURE 3: THE BET ISOThERM
3.1 Introduction
3.2 The BET Isotherm 20
3.3 Applications of Adsorption 23
3.4 Chromatography 24
3.4.1 The chromatogram 25

LECTURE 4: CONCEPTS USED IN CHROMATOGRAPHY 28

4.1 Introduction 28
4.2 Concepts Used In Chromatography 28
 4.2.1 Capacity factor 28
 4.2.2 Relative retention, separation factor 29
 4.2.3 Number of theoretical plates and plate Height 29
 4.2.4 Resolution 30
 4.2.5 Peak Capacity 30
 4.2.6 Trennzahl, separation number 31
 4.2.7 Reduced parameters 31

4.3 Classification of Chromatographic Techniques 34

LECTURE 5: GAS CHROMATOGRAPHY (GC) 36

5.1 Introduction 36
5.2 Gas Chromatography (GC) 36
 5.2.1 Sample Injection System 37
 5.2.2 Columns 37
 5.2.3 The stationary phase 39
 5.2.4 Column Thermostating 39
LECTURE 6: HETEROGENEOUS CATALYSIS

6.1 Introduction

6.2 Heterogeneous Catalysis

- **6.2.1 The Eley-Rideal Mechanism**
- **6.2.2 The Langmuir - Hinshelwood Mechanism**

6.3 Examples of Catalysis

- **6.3.1 Catalytic Activity**
- **6.3.2 Hydrogenation**
- **6.3.3 Oxidation**
- **6.3.4 Cracking and reforming**

LECTURE 7: LIQUID SURFACES

7.1 Introduction

7.2 Liquid surfaces

- **7.2.1 Surface tension**
- **7.2.2 Curved surface – Bubbles, cavities and droplets**
- **7.2.3 Capillary action**
- **7.2.4 Capillary rise**

7.3 Surfactants

- **7.3.1 The Surface Excess**

7.4 Spreading

- **7.4.1 Adhesion and cohesion**
- **7.4.2 Spreading of one liquid on another**
LECTURE 8: ACTION OF SOAP SOLUTIONS

8.1 Introduction
8.2 Action of Soap Solutions
 8.2.1 Mechanisms of Detergency
 8.2.2 Wetting
 8.2.3 Dirt Removal
 8.2.4 Redeposition of Dirt
 8.2.5 Detergent Additives

LECTURE 9: COLLOIDAL STATE

9.1 Introduction
9.2 Colloidal State – An Intermediate State
 9.2.1 Phases of Colloids
9.3 Classification of Colloids
9.4 Preparation of Colloidal Solutions

LECTURE 10: PURIFICATION AND PROPERTIES OF COLLOIDS

10.1 Introduction
10.2 Purification and properties of Colloids
 10.2.1 Purification of colloids
10.3 Properties of Colloidal Solutions
10.4 Hardy-Schulze Rule.

LECTURE 11: APPLICATIONS OF COLLOIDS

11.1 Introduction
11.2 Applications of Colloids
11.3 Emulsion and Emulsifying Agent 87
 11.3.1 Emulsion. 87
 11.3.2 Preparation of Emulsion and Role of Emulsifying Agent 88
 11.3.3 Properties of Emulsions 88
 11.3.4 Uses of Emulsions 88
 11.3.5 Harmful Effects of Emulsions. 89
 11.3.6 Demulsification 89

11.4 Gels 89
 11.4.1 Types of Gels and their Properties 89

11.5 Micelles 90
 11.5.1 Mechanism of Micelle Formation 90

LECTURE 12: MACROMOLECULES 93

12.1 Introduction 93

12.2 Macromolecules 93
 12.2.1 Mean Molecular Masses 93
 12.2.2 Colligative properties 95
 12.2.3 Estimating the volume of polymer molecules 98

LECTURE 13: SEDIMENTATION 100

13.1 Introduction 100

13.2 Sedimentation 100

13.3 The Isoelectric Point 105

13.4 Viscosity 106

14.0 References 111